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Abstract Embedding logical operations in non-dissipative physical processes requires the use 
of reversible logic. Following Feynman's approach. the sixteen distinct truth tables of classical 
logic are shown to be contained in the 8! reversible logic operations covered by the symmetric 
group Ss, which permute the eight values of three logical variables. Small subgroups of Ss a e  
shown to cover, respectively, reversible logic, reversible switching and reversible arithmetic. A 
new universal primitive is found which generates a covering group of reversible logic. It is 
shown th?t the octahedral group in four dimensions covers both reversible logic and switching 
and, hence. that the orthogonal group O(4) provides a covering group for quantum gates. 

1. Introduction 

Computers are based on logical operations, such as AND and OR, which act upon Boolean, 
or logical, variables which take the value one (2 true) or zero (E false). These operations 
are frequently expressed in terms of truth tables which determine the value of one output 
variable in relation to the values of two input variables. There are just sixteen distinct 
huth tables of this type. We shall refer to the physical realizations of truth tables as gates. 
Connections between gates, which transmit the values of  logical variables, will be referred 
to as wires. It is usual to describe computer architecture in terms of a series of connected 
gates which are supposed to operate sequentially. Such a computer has a definite number 
of input and output wires. 

Gates which emulate truth tables are not reversible; they lose one bit of information per 
operation. Thermodynamically, this corresponds to a loss of at least kT In 2 in heat energy 
in each operation (Landauer [l], Feynman [2]). As Feynman points out, such quantities 
of energy are trivial compared with the actual amounts of energy dissipated in even the 
most miniaturized solid-state logic gates. Nevertheless, an important principle is involved, 
for it shows that a network of conventional logic gates cannot be embedded in a lossless 
dynamical process, whether this be described in terms of classical or quantum mechanics. 

It has frequently been pointed out, e.g. by Bennett [3], Feynman [2]. Benioff [4-6], Peres 
[7], Fredkin and Toffoli [SI, that it is possible to design a lossless dynamical computer using 
the operations of reversible logic, in which no information is lost and nq heat is dissipated 
during each operation. Such computers have an equal number of input and output wires. 
The operations of reversible logic can be expressed as permutations of the possible values of 
sets of logical variables. While ordinary digital logic is clearly appropriate for problems in 
which a single numerical or logical result, such as an average, is required, reversible logic 

t In memoriam: this work is basec~on a final year project repoa by the first author, who subsequently died in a 
climbing accident on Ben Nevis in February 1995. ~. 
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is more appropriate for parallel information processing and the simulation of dynamical 
systems. 

An N-input reversible computer permutes the set of all the ZN possible values of its 
input logical variables to provide its ZN possible outputs. While such a process can be 
envisaged as taking place in a single time step it can, in practice, be carried out sequentially 
in several time steps by combining operations in subsystems of the reversible computer. In 
order to be embedded in a lossless dynamical process, each of these subsystems must also 
operate reversibly. 

The ‘standard problem’ of classical digital logic is to find a way of expressing an 
arbitrary logical function of N variables as a sequence of operations, each of which can be 
carried by a single logical gate, with two inputs and one output In the case of reversible 
logic, the standard problem is to find a systematic method of reducing a specified operation, 
acting upon N variables, to a succession of operations acting upon n << N subsystem 
variables at a time. 

There is a considerable literature [2,481 on the relationship between the truth-table 
formulation of classical logic and the reversible operations into which it can be embedded. 
The basic result, on which both the existing literature and the following discussion are 
based, is that permutations of the values of at least three logical variables are required to 
express all of the 16 possible truth tables of classical logic. Hence, in terms of the above 
notation, the minimum value of n is three: each reversible gate has three input and three 
output wires. The permutation operators (which characterize gates) act on the components of 
eight-dimensional vectors, formed from the outer product of three two-dimensional vectors. 
Each of these two-dimensional vectors expresses the imth value of a single logical variable 
in the form [ l ,  01 = true, or [0,1] = false .  It follows that the eight-dimensional vectors 
are all in a standard form, in which seven elements are zero and the remaining element is 
unity. The position of the unit element specifies the simultaneous truth values of all three 
logical variables. 

The physical realization of reversible operations on three logical variables will be called 
reversible gates. The operation of reversible gates can be expressed in the form of 8 x 8 
permutation matrices which, by their construction, keep the eight-dimensional vectors in 
standard form. It is convenient to represent permutation operators in standard cyclic notation, 
using the labels 0, 1, . . . , 7  to denote the eight distinct basis vectors according to their binary 
value. For example, the label 3 = 110 denotes [O. 0, 0, L O ,  0, 0,Ol. Note that, for easy 
comparison with the literature, we have written these numbers in the reverse of the usual 
binary digital order. 

Most discussions of reversible gates have centred on their relationship with reversible 
(i.e. energy conserving) dynamics. In particular, Feynman 121, Benioff [44]  and Peres [7] 
have investigated methods of constructing Hamiltonians which describe the time evolution of 
the logical states of reversible computers. This paper is concerned with the group theoretical 
properties of reversible logic gates, especially in relation to the characterization of reversible 
computer architecture. It also provides a new group theoretical characterization of quantum 
gates (Deutsch [SI). 

2. Logical primitives and logical groups 

Denote the two input variables of a logic gate by a and b and its output variable by c. Writing 
the four possible values of the logical variables ab in the stnndardorder [OO, 10,01, 111 it is 
possible to express truth tables in terms of the four corresponding values of c. For example, 
AND is characterized by the values [OOOl} and OR by ( O l l l } .  It will be convenient, in 
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the following, to characterize the truth tables of the 16 distinct logical functions either 
by such sets of four binary digits, or by the decimal equivalents of their binary values. 
Hence, AND = (OOOl] = [l] and OR = [Olll] 2 (71. It is well known that either 
NAND {lOOO} s [S] provide universal primitives for classical 
logic in the sense that gates of just one of these types alone can be combined to produce 
any logical function. This is significant in relation to the design of hardware for digital 
circuits. 

Analogous universal primitives have been sought for reversible logic. Feynman [2] 
determined a set of three universal primitives which, for a particular choice of arguments, 
can be expressed in cyclic form as follows. 

NOT@) = (01)(23)(45)(67) 

[ l l l O ]  = {14] or NOR 

(0 

which has the effect of replacing the Boolean variable a by 1 - a and leaves b and c 
unchang4 

(ii) 
CONlXOL(b) - NOT(a) E (23)(67) 

which replaces a by 1 - a if b = 1, and leaves a unchanged if b = 0; 
(iii) 

CONTROL(c) - CONTROL(b) -NOT@) ~ ‘ ( 6 7 )  

which replaces a by 1 - a if both c = 1 and b = 1, and otherwise leaves a unchanged. 
Gate (iii) has been proposed as providing a single universal primitive by Toffoli 1101 

on the grounds that, as it contains the truth table for NOR (a’ = b NOR c), it can certainly 
be used to construct all other truth tables. It turns out, however, that this gate, even when 
combined with wire switching, does not generate all of the 16 truth tables of classical 
logic without the introduction of additional logical inputs. It is not, therefore, a universal 
generator of reversible logic in the sense used in this paper. 

The first result of this paper is derived in the appendix: Feynman’s 121 three primitives, 
taken together with the ‘switching’ permutations which interchange the variables a, b and 
c,  generate all the elements of the symmetric group Ss. In this sense (i), (ii) and (ii) taken 
together generate classical logic. We therefore identify Sg as a covering gmup of reversible 
logic. Multiplication of elements in Sg corresponds to the combination of two reversible 
gates in sequence to form another gate. It is interesting to note that all of the elements in 
SS can be constructed using only two generators, i.e. the eight-fold cycle (01234567) and 
the interchange (67). However, the use of these generators to obtain any particular element 
of Sg may require the construction of a very complicated product. 

Fredkin and Toffoli [SI have studied the effect of adding the additional constraint that 
reversible operations should be bit conserving, in the sense that only operations that permute 
the logical triples within either or both of the two sets [ l  = 1OO,2 = 010,4 = 0011 or 
[3 = 110,5 = 101.6 = 0111 are allowed. This, as they demonstrate in their paper, is 
of particular interest in relation to setting up simple mechanical realizations of reversible 
logic. Fredkin and Toffoli [SI were able to show that the single primitive ‘Fredkin’ gate 
represented by the permutation (12), when taken together with arbitrary wire permutations, 
is sufficient to generate all possible logical and arithmetical relationships. This is achieved, 
however, at the expense of using very complicated interconnections between several gates, 
involving the introduction of more than three logical input variables, to produce all 16 truth 
tables of classical logic. Hence, for similar reasons to the Toffoli gate, the Fredkin gate 
does not provide a universal generator of reversible logic. 
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This article is concerned with finding answers to four related questions. 
(1) What is the minimal covering group of reversible logic? 
(2) Is there a single universal generator of reversible logic? 
(3) What are the minimal covering groups of wire switching and arithmetic? 
(4) Are group theoretical considerations relevant to the characterization of quantum 

gates? 

3. Minimal covering groups of reversible logic 

Our starting point is the characterization of reversible logic by the 8! elements in Ss which 
covers all the distinct permutations a', b', c' of the eight possible triplets a ,  b, c of the logical 
variables. The simplest way to embed truth tables in these transformations is to regard a 
and b as logical input variables and c as a control variable. The variable c is assigned 
the role of selecting sets of four output values from the upper or lower halves of the eight 
output values of one of a' or b' or c'. It can easily be verified that the constraint c' = c is 
too strong for all 16 truth tables to be found in the values of a' orb'. With no constraints, 
each reversible operation produces six (possibly all different) truth tables corresponding to 
the values of a' or b' or c' for either c = 0 or c = 1. 

Table 1. Permutations of the eight values of the three logical variables (0. b. c). corresponding 
to the four elements of the group GdI). All sixteen distinct truth tables appear in the 24 columns 
of four values corresponding to the choices E = 0, c = 1 in the column headed E .  The last two 
rows identify the wth tables appearing in the column above. 

E A = (07) B = (34) C = (07)(34) 
~ ~~ 

0 000 111 000 111 
1 100 100 100 100 
2 010 010 010 010 
3 110 1 IO 001 00 I 
4 001 
5 101 
6 011 
7 111 

0 1  110 
101 101 
01 1 011 
000 111 

110 
101 
01 1 
000 

C = O  10, 12.0 ~ 11, 13, 1 2, 4, 8 3.5.9 
e = l  IO. 12, 15 2, 4, 7 11, 13, 14 3,5,6 

Given that the original may,  corresponding to the identity, defines four distinct truth 
tables, the smallest possible covering group would contain just two elements in addition 
to the identity. Each of the elements of this group would be required to produce six 
distinct truth tables, giving the required total of 16. Such a group, which would necessarily 
have a single generator and, hence, just one primitive, has not been found. We have, 
nevertheless, found two distinct groups of order four which reproduce all 16 truth tables, 
as is demonstrated in tables 1,2 and 3. These groups provide alternative minimal covering 
groups of reversible logic. In terms of permutations they are given by 

and 
(%(I) = [ E ,  (07), (34), (07)(34)1 = [ E ,  (0711 @ [ E ,  (34)l 

G4(IT) = [ E ,  (03741, (0473). (07)(34)1 
where E denotes the identity operation. The generators of Gq(1) are the permutations (07) 
and (34). Gd(I1) is a four element cyclic covering group of reversible logic. This group 
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Table 2. Permutations of the eight values of the Wee logical variables (a. b. e). corresponding 
to the four elements ofthe group Gi(II). All sixteen distinct fNth tables appear in the 24 columns 
of four values corresponding IO the choices e = 0, e = 1 in the column headed E. 

G4(19 E A = (0374) B = (0473) C = (07)(34) 

0 000 001 110 1 1 1  
1 100 100 100 100 
2 010 010 0 10 010 
3 110 000 111 001 
4 001 111 ow 110 
5 101 101 101 101 
6 011 ~011 011 011 
7 111 110 001 000 

Table 3. Appearance of the truth tables, designated In), in the groups of reversible logic 
opwadons G 4 9  and G4(II). c = 0 corresponds to the rows 0-3, and c = 1 to rows 4-7 in 
tables 1 and 2. All truth tables appear either once or twice. Subscripts a, b, e indicate which 
column corresponds to the indicated truth table. . , 

can be generated with either (0374) or (0473). either of which, therefore, provides a single 
universal generator of reversible logic. 

Several groups of order six have been found which embed all sixteen truth tables. 
Examples are 

GdI) = ( E ,  (07)(12), (07)(14), (07)(24), (124), (142)l 
GdII) = { E ,  (07)(35), (07)(36), (07)(56), (365), (356)) 

and 

Gs(III) = { E ,  (236). (263)) @ ( E ,  (07)}. 

Each of these groups clearly requires a minimum of two generators. 
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4. switching 

In addition to the logical operations, it is necessary to be able to interchange, or switch, the 
relative positions of the input and output wires which interconnect the reversible gates; this 
corresponds to interchanging the variables a, b, c. Most authors [2,4-6] have considered 
only feed-thmugh gates which have separate input and output lines. In this case switching 
can be achieved simply by interchanging the wiring which connects the different gates, so 
there is little point in considering its implementation by the gates themselves. However, in 
the construction of may  processors it is natural to use sequential response gates where the 
outputs appear, in the next time step, on the same three wires as the inputs. In this case it 
is appropriate to implement wire interchanges as an internal function of the gates. 

Including the identity, there are six wizching operations which can be represented as 
permuting the three inputs a, 6, c, or as acting upon the eight logical variables 0, . . . ,7. 
They form the group 

GdSW) = [ E ,  (ab), (ad ,  (bc), (abc), (acb)l 
= [ E ,  (12)(56), (14)(36), (24)(35), (W(365) .  (142)(356)1. 

This p u p  requires a minimum of two generators; for example, the wire interchange 
operations (12)(56) and (24)(35). It is, of course, a subgroup of SS; taken together with 
Feynman’s three primitives, in the appendix it is shown to generate Sa. This choice of 
five generators has the advantage that it allows the construction of all logical and switching 
operations using relatively simple combinations. 

We now seek to find the minimal covering group of reversible logic that also contains 
the switching group G6(SW) as a subgroup. Simply combining the permutations of G6(sw) 
with those of Gd(I) or G4(JI) can be shown to generate groups with 96 elements. This is 
because the operation (34) does not commute with the generator (24)(35) of G6(SW). Note, 
however, that the group Ggg formed by combining G4(Q with G@W) requires only three 
generators, namely (12)(56), (14)(36) and (0374). 

We have also discovered two 35 element covering groups of reversible logic and 
switching. These are 

G36(1) = [ { E ,  (124), (142)) @ [ E ,  (356), (36511, {(12), (24), (14)l E3 {(35), (36). (56))l 
@[E,  (0711 

= &(l1 2.4) €3 s3(3.5, @]EVEN €3 [ E ,  (07)1 
where &(i, j ,  k )  denotes the symmetric group based on permutations of i, j ,  k and 

G36 (n) = G6 (I) @ c6 (rr) 
where G6(0 and G 6 0  are as defined above. A systematic search has not revealed any 
covering groups which have a smaller number of elements. We therefore assert that these 
are miniml covering groups of reversible logic and switching. Both &(I) and G%(II) have 
four generators. For G36(I) these are (07). (?.4)(35), (14)(36) and (14)(35). The generators 
Of Comprise the four products Of the generators of &(I) and G60) .  

5. Reversible arithmetic 

In applications of classical logic to computer design it is usual to construct arithmetical 
gates as combinations of logical gates. This is usually done by first constructing half- 
adders in term of logical gates. Two half-adders are then combined with a NOT gate to 
form a full-adder. Although a full-adder relates three input variables to two output variables 
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it cannot be embedded into any reversible gate. Half-adders combine two binary digits to 
provide both their binary sum, corresponding to the truth function [6) = (OllO), and a carry 
digit corresponding to [8) = [OOOl). It can easily be verified that either of the operations 
(25)(36) and (236) contain both of these truth tables. Of these, (25)(36) is by far the most 
interesting as it contains the carry of the binary sums of all three input digits in the b' 
column and their sum digit in the a' column for c = 0 and in the d column for c = 1 (see 
table 4). In other words it carries out the function of afull-udder, except that the first digit 
of the output can be in either of the two columns a' and c'. 

Table 4. A reversible half-adder. In the case c = 0, a' is  the first digit of the sum (I + b 
(=a+b+c),andb'isthecarrydigit. Inthecase== l,disthefirstdigitofthesumn+bfc 
and b' (=pain) is the carry digit. 

E 
ubc 

0 000 
1 100 
2 010 
3 110 
4 001 
5 101 
6 011 
7 111 

(25)(36) 
u'b'e' 

000 
100 
101 
011 
001 
010 
110 
111 

None of the covering groups of reversible logic and switching that have already been 
discussed (apart from Sg itself) contain operations that produce both 16) and {S) on single 
output wires. Nevertheless, the fact that the operations (25)(36) and (236) certainly appear 
in Sg leads to the question as to whether a subgroup can be found which covers both logic 
and half-adders. A six element group which satisfies this criterion is 

WTW = [ E ,  (07)IO [ E ,  (236), (263)). 
This group has two generators, i.e. (07) and (236). The smallest covering group which 
contains both logic and the half-adder (25)(36) is the eight element Abelian  group with 
three generators 

Because of the need to incorporate a carry operation which involves a feedback loop, 
arithmetic can only be properly expressed in terms of a timeordered sequence of operations. 
Hence, a full analysis of reversible arithmetic requires the development of computer 
architectures involving feed-through gates operating in time-ordered sequences. We shall 
not pursue this topic further in the present work. 

6. Embedding in continuous groups and the characterization of quantum gates 

Baake er d [ll] have shown that the 384 elements of the hyperoctahedral group (denoted 
W,) can be expressed as permutations of the eight vertices of the four-dimensional 
generalization of the octahedron. The relationship between these vertices and the eight 
values of three logical variables is specified by the vertex labelling shown in table 5, where 
the ei represent unit vectors in the four-dimensional domain. The operations of the group W, 
correspond to the 4! permutations of the rows of table 5 ,  combined with the Z4 interchanges 
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of the two elements in any given row. This group is clearly a subgroup of sg, and has been 
shown [I 11 to be generated by just two elements which, in terms of the labelling of table 5, 
can be written as (02317546) and (01547623). 

M R Rayner and D J Newmn 

Table S. Numbering of the eight vertices of the hyperoctahedron. 

For a given subgroup of Ss to be a subgroup of W4, each of its elements must conform 
to the SS cycle structure of some element of W+ The groups G4(I), G4(II), G&W) and 
Gs(HA) satisfy this criterion. However, ( 3 6 0 ,  ( 3 6 0 ,  G&II) and G6m.k) do not satisfy 
this criterion because they include elements of order three consisting of a single threefold 
cycle of sg, while all elements of order three of W.j consist of a pair of three-fold cycles of 
Ss. Of the groups that do satisfy this criterion, it may be shown that, apart from &(HA), 
their generators are all included in W4. The element (36) of Gg(m) is not, however, an 
element of W4. The survival of G40), G 4 0 ,  G6(SU3 as subgroups of W4 implies that the 
hyperoctahedral group W4 is a covering group of both reversible logic and switching. We 
have not carried out an exhaustive examination of the elements of W4 to determine whether 
or not it contains any elements that provide reversible half-adder operations. 

Baake er al [ 1 I] have also shown that the hyperoctahedral group W4 is a subgroup of 
the orthogonal group O(4). The identification of W4 as a covering group of reversible logic 
and switching shows that O(4) is a continuous group that contains all these operations. 
Hence, O(4) is a covering group of the quantum logic gates that have been investigated 
by Deutsch [9] and DiVincenzo [I21 and, given this fact, the latter group is identified as a 
covering group of quantum gates. This improves on the recent finding of DiVincenzo [12] 
that two-bit gates are universal for  quantum computation which, in group theoretical terms, 
corresponds to saying that U(4) is a covering group of quantum gates. Given that O(4) is 
isomorphic to SU(2) 8 SU(2), we have the fact that coordinatedpairs ofsingle bit gates are 
universal for quantum computation. This way of expressing O(4) suggests that a physical 
realization of quantum computers could be obtained by using single spin systems coupled 
only by the action of the gates. 

7. Conclusions 

The characterization of reversible logic in terms of permutations [Z, IO] has been shown to 
lead to the identification of s g  as a covering group of reversible logic. In the course of an 
attempt to obtain a better insight into the underlying group theoretical structure of reversible 
logic, answers have been obtained for,each of the four questions that were posed at the end 
of section 2. 

(1) Two groups of order four, denoted G4(I) and (3400, provide alternative minim1 
covering groups of reversible logic. 

(2) The generator (0374) of G 4 0  is identified as a universal generaor of reversible 
logic. The use of this generator as the primitive generator in serial reversible computers 
avoids the complicated wiring constructions that are necessary when using the Toffoli gate 
(67) and the Fred!& gate (12). 

(3) The six element group, denoted Gs(SW), has been shown to cover all wire switching 
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operations. As is shown in table 4, it is possible to find a group of order two in which the 
element other than the identity, functions as a half-adder. A group with six elements and 
two generators, denoted G6(c), has been found which covers all logical operations as well 
as the half-adder. 

(4) Both G,(II) and G&W) have been shown to be subgroups of the hyperoctahedral 
group W4, which has a minimum of two generators. Given that the orthogonal group O(4) 
contains W4 as a subgroup [l l] ,  O(4) has been identified as the covering group for quantum 
gates. We speculate that it is also the minimal covering group. 

Several interesting questions have not been addressed. For example, nothing has been 
said about the relationship between the group theoretical characterization of gates and the 
architecture of complete reversible or quantum computers. The problem of programming 
reversible and quantum computers is also worth considering. 
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Appendix 

Standard generators of the symmetric groups S. are the cyclic elements ( j ,  i )  for all i 
not equal to some fixed j .  In the case of Ss it will be convenient to take j = 7 and 
i = 0,. . . ,6. We show that these seven generators can be obtained from the reduced set 
of five, comprising of Feynman’s three generators (01)(23)(45)(67), (23)(67) and (67), and 
the two generators of the wire switching group G6(SW), (12)(56) and (14)(36). 

(a) (67) is one of Feynman’s generators. 
(b) (57) = (12)(56) (67) (12)(56).. 
(c) (37) = (14)(36) (67) (14)(36). 
(d) (23) can be obtained as a product of Feynman’s generators, i.e. (23) = (23)(67) (67), 

hence (27) = (23) (37) (23). 
(ej (17) = (12)(56) (27) (12)(56). 
(f) (01)(45) = (01)(23)(45)(67) (23)(67), so that (07) = (01)(45) (17) (01)(45). 
(g) (47) = (14)(36) (17) (14)(36). 
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